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Solutions of a hyperbolic heat conduction equation, which are represented by a 
class of special functions, are obtained for generalized boundary conditions of 
the first-third kind by the Laplace transform method. 

The practical realization of highly intensive heat transfer in pulse [I] and laser [2] 
engineering units, in laser metal treatment [3], in plasma coating processes [4], and also 
in energy channels [5] evoked interest in studying this phenomenon. 

The theoretical foundation for the relaxation model of heat conduction given by A. V. 
Lykov [6] on the basis of the general theory of irreversible thermodynamics resulted in 
numerous investigations of the highly intensive heat transfer phenomenon in bodies which is 
described, for the one-dimensional case, by the equations 

Oq = . _  ~ ao (1) 

a2o a20 aO + %,q a -  (2) 
& &~ ay2 

Obtaining the solution of (I) and (2) by analytical methods for different boundary con- 
ditions and developing engineering computational formulas were restricted by three factors: 

I. The problem is reduced to a class of transforms of the type 

F (s) = exp [-- y V'(s + a) (s + ~)] 
s~ (V (s + ~) (s ,-4-~)) ~ (3) 

when applying an integral transform method, represented in the handbook literature on the 
Laplace transform in limited quantity. 

2. Available solutions of individual boundary-value problems contain single and multiple 
integrals of a special class: 

~P exp (-- p~)I~ (~ 1/-~2--v z ) dr, t tP exp (--~t) I~ (a V t  g--~- v ~ ) dt, 
(i/Z2__ Vz)i ~ ( tV~_y2 )i (4) J 0 g 

which are difficult to use in engineering computations. 

3. In formulating the boundary conditions for (I) and (2) the majority of authors 
ignore the relaxation nature of the heat transfer; boundary conditions of the first-third 
kind were described by classical relationships, which ~oes not permit the use of the results 
obtained. 

It is pertinent to note that (2), referred to the class of hyperbolic equations of 
mathematical physics, not only describes thermal phenomena but also the propagation of waves 
originating on a different physical basis: thermoelastic [7,8], electric [9], and shocks in 
fluids [10]. Moreover, diffusion phenomena in gases [II] and moisture transfer in capillary 
porous bodies [6] are described by the hyperbolic equation (2). Problems of evaluating the 
integrals (4) and finding the originals from the transforms (3) also occur in solving the 
problems mentioned. It hence becomes clear that the solution of this problem is of great 
value for the analysis of a large class of heat, moisture, mechanical and electrical energy, 
etc. transport phenomena. 
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TABLE 1. Representation of Integrals b y  V-functions 

Integral Representation 
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In the present paper it is proposed to use the mathematical apparatus Of special func- 
tions [12] to represent integrals of the type (4), to find the transform-original correspon- 
dence of (3), and on this basis to construct the solution of relaxation heat conduction bound- 
ary-value problems. 

The representation of certain integrals and originals of transforms by V-functions is 
given in Tables ] and 2, The definition of the functions, their properties, and numerical 
tables are given in []2]. By definition Vi, k = Vi,k(~ , ~, ek) ; for c k = ] Vi, k ~ V i while 

Vi, k ~ Vi,o for c k = O. The following arguments are taken in Tables ] and 2: 

For formulas (5)-(8), (18)-(21) 

( ~ + y ) ,  ~ = ( ~ - - y ) ,  . c ~ -  c ~ = ~ ;  
~ ~ T Y P -  V ~  ~'~-~ ' ~, 
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TABLE 2. Laplace Correspondence on the Basis of V- 

Functions 

Laplace tramform Original 
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Fig. 1. Change in  body temperature for  a temperature jump 
on i t s  surface ( re laxat ion model (a); Fourier model (b)) :  
I) Y : I, 2) 3; 3) 5; dash-dot curve e -~176 

for (14) - (17)  

~--I~  ( * + v ) ,  n = - - ( * - - v ) ,  
4 4 

v 3  
c , -  V- -vT ' c 2 -  ; 

for (22) - (31)  
x + g  

4 

c3 = V I  + 4a z --2a, 

�9 - - y  1 - - a  t 

4 1 + a  c3 

1 
c~ = l - 2a + 2 V ' a - ( a - 1 )  , c5 = - -  

C i  

We reduce the problem of determining the space-time changes in the thermal state of a 
semi-infinite body to the solution of the relaxation heat transfer equation (I) and the hyper- 
bolic heat conduction equation (2), which we write in deviations of the parameters from the 
stationary value and in dimensionless space and time coordinates 

aAq _K.OAO 0AO ~ h O  O2AO 
hq + aFo---~= a T '  a F o ~  ~ aFo-~--  O ~  (32) 

for zero initial and generalized boundary conditions of the first-third kind [7,13]: 

For the first kind 

For the second kind 

AO (0, Fo~) = AO~; (33) 

a A e ( 0 ,  For) 
- -  K ~ - ~  exp (~ - -  For) d~? = hqfi  (34) 

0 

exp (~ - -  Fo~) d ,  = AO (0, Fo~) - -  At. 

For the third kind 

I ?~ 0AO (0, Fo~) 

Bit 3 OY 
0 

Boundary c o n d i t i o n s  of t he  F i r s t  Kind 

Application of Laplace transform operations to (32) in the variable For by using the 
additional boundary conditions (3AO(Y, 0)/3Fo r : 0, A| Fo r ) = O) yields the solution in 
the transform domain [14]: 

(3s) 

AO (Y, s) 1 
= -- exp [-- Y Vs(s + I) ], 

AOi s 

A q ( Y ,  s) = e x p [ - Y V s ( s  + 1)] 
KAO~ r (s + l~ 

(36) 
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Fig. 2. Change in heat flux in a body for a jump in 
heat supply to its surface (see Fig. | for a and b): 
I) Fo r = I; 2) 4; 3) I0. 

The relations (15) and (18) in Table 2 permit writing the change in temperature and heat 
flux in the space--time domain 

A__.OO = 2Vi - Vl,o, At] = VLo, (37) 
AOi KAOi 

where 

For -- Y V = V ( ~ ,  N), ~ = FOr '+ Y - ,  N = . (38) 
4 4 

These dependences satisfy the boundary conditions and for Wq § ~ go over into the solution of 
the parabolic heat conduction equation [15]. 

The general pattern for the change in temperature in a semi-infinite body is shown in 
Fig. I. Here results obtained on the basis of the classical relationship between the heat 
flux and temperature gradient (Fourier's law) are presented for comparison. It is seen from 
the figure that the boundedness of the heat propagation velocity in media governs the wave 
nature of the heat transport process; at any time an unperturbed domain and a domain of ther- 
mal changes exist. The front of the wave being propagated is determined by the expression 
Y = For(y = wqm). Hence, the temperature and heat flux undergo jumps on the front, which 
diminish exponentially with time 

A.__OO = A q = exp (--  0.5 For) for Y = For" (39) 
AOt KAOi 

It follows from (39) that the maximum heat flux occurs at the initial instant, whose magni- 
tude is finite and determined by the level of the temperature jump on the body surface and 
by the coefficient K. This eliminates the fundamental contradiction for heat transport in 
the Fourier model. Analysis showed that the asymptotic representations of the solution (37) 
for large values of m(For) go over into the classical dependences [15]. This is illustrated 
in Fig. I: results obtained by the wave model of heat conduction and by the Fourier model 
approach each other as the dimensionless time increases. It is established by computations 
that both models yield slightly different results even for Y ~ I0 and Fo r ~ I0. 

o 45 go g ro~ 

F i g .  3. I n f l u e n c e  o f  e x t e r n a l  h e a t  t r a n s f e r  c o n d i -  
t i o n s  on the  change  i n  body t e m p e r a t u r e  ( F i g .  I f o r  
a and b): i) Bir= =; 2) i; 3) 0.I. 
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Fig. 4. Change in heat flux on a body 
surface for a jump in temperature of the 
environment (notation the same as in Fig. 
3). 

Boundary Conditions of the Second Kind 

By using (34), the solution can be obtained in the transform domain [16] 

AO(Y, ~ 1 / s + l  e x p [ - - Y V ' s ( s +  1)], 

K 
Aq(Y, 0 1 

= ~ exp [ _ y ] / s ( s  + 1) ]. (40) 
Aqt s 

The t i m e  d e p e n d e n c e s  o f  t he  change  i n  t e m p e r a t u r e  and h e a t  f l u x  a r e  o b t a i n e d  by  u s i n g  t he  
c o r r e s p o n d e n c e s  (18) and ( 2 0 ) :  

AO = 4V~ + Vi 0, A_q_q =2Vt__Vt,o ' ( 4 t )  
I Aqi ' Aqi 

K 

where  t he  a rgumen t s  o f  the  V - f u n c t i o n s  a r e  d e t e r m i n e d  by ( 3 8 ) .  The wave n a t u r e  o f  t he  change  
i n  t he  t h e r m a l  s t a t e  o f  t he  body ( F i g .  2) i s  a l s o  o b s e r v e d  i n  t h e  c a s e  o f  p e r t u r b a t i o n  o f  t he  
e x t e r n a l  h e a t  s u p p l y .  I n  c o n t r a s t  to  t h e  F o u r i e r  mode l ,  which  y i e l d s  a z e r o  v a l u e  o f  t he  
change  in  s u r f a c e  t e m p e r a t u r e  a t  t he  t i m e  o f  s u p e r p o s i t i o n  o f  h e a t  f l u x  on t h e  p e r t u r b a t i o n ,  
t a k i n g  a c c o u n t  o f  t he  i n e r t i a l  t e rm in  t h e  h e a t  t r a n s p o r t  e q u a t i o n  (32) r e s u l t s  i n  a jump 
change i n  t h e  t e m p e r a t u r e  o f  t h e  s u r f a c e  layer  f o r  T = +0 by t h e  q u a n t i t y  A@ = ( I / K ) A q l .  
T h i s  r e s u l t  a l s o  r e f i n e s  t h e  i n f o r m a t i o n  a b o u t  t h e  dynamic p r o c e s s  o f  h e a t  c o n d u c t i o n  i n  t h e  
initial stage. 

From (41) it is easy to establish the agreement between the solutions using the wave 
heat conduction model and the Fourier model as Wq ~ ~ and T § ~. 

Boundary Conditions of the Third Kind 

The Laplace integral transform taking into account the conditions on the body surface 
(35) results in the following result in the transform domain: 

AO(Y, ~ BirlZ~(s + 1) exp [ - - v V ~ ( s  + 1)1 

At = s [s + Bi~ ] f s  (s + 1)1 ' 

Aq(Y, s) = ,Bi~expt_ YV-s(s  + 1)] 
' (42) KAt s + Bi r ] / s ( s  + 1) 

which by using (28) and (29) 

n, ci) ; where Vx, I = V~ x(E, 

can be represented by the time dependences 

AO ~ 2 V t +  Bi~ Vl,o 2 
A---~ t--Bi------~ 1 - - B i ~  V,,,, (43) 

Aq 2Bit Bit Vlo, (44) 
l--Bi  ' 

~, n are determined by (38), and ci = (I -- Bir)/(l + Bir). 
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The influence of the heat transfer conditions on the thermal change within the body and 
its surface is shown in Figs. 3 and 4, from which it is seen that the presence of an external 
thermal resistivity Bi r diminishes the thermal action on the body. The amplitude of the tem- 
perature and thermal changes on the wave front decreases according to the law 

Ae _ Aq _ Bi~ e x p ( -  0.5FoA. 
At KAt 1 -~ Bi~ 

Therefore, the phenomenon of highly intensive heat transport can be described by the 
apparatus of special V-functions. The conditions Y < I0, Fo r < I0 for which the wave and 
classical models of heat conduction yield differing results determine the space--time domain 
of the influence of relaxation effects on the heat conduction in media. Tables of integrals 
and correspondences of the transform-original, represented by V-functions, and a study of 
the fundamental properties of these functions permit analysis of the heat, moisture, me- 
chanical and electrical energy transport phenomena under conditions of highly intensive changes 
in the transport substation fluxes. The presence of V-function tables [12] reduces engineer- 
ing computations of the heat transport phenomenon to the simplest operations. 

NOTATION 

y, space coordinate, m; T, time, sec; ~, temperature, ~ q, heat flux density, W/m2; 
A, deviation of a parameter from the stationary value; a, thermal diffusivity, m2/sec; %, 

,W 2 heat conduction,W/(m.degK); ~, heat transfer coefficient /(m "degK); Trq , thermal relaxation 
time, sec; wq, heat propagation velocity, m/sec; Y = yWq/a, dimensionless coordinate; Fo r = 
Tw$/a, dimensionless time (Fourier relaxation number); -Bi r = ~a/%Wq, dimensionless heat 

transfer coefficient (Blot relaxation number); K = %Wq/a; s, Laplace transform variable; In, 
n-th-order Bessel function of imaginary argument. 
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